Basic Concepts of Pharmacology in Drug Development

Bob Lyon, PhD
Procter and Gamble Healthcare
Mason, OH

American Translators Association
San Diego, CA October 26, 2012
Agenda

• Overall Goals:
 • Gain an understanding of how drugs work
 • Gain an understanding of pharmacologic theory and practice
 • Gain an understanding of how drugs may be evaluated

• Terminology:
 • Mechanisms of Action
 • Agonists and Antagonists
 • Releasing Agents and Uptake Blockers
 • Potency
 • Efficacy
 • Dose Response
 • Therapeutic Index
 • Radioligand Binding Methods
Overview of Drug Development

• Basic Research:
 • Therapeutic target identified (e.g., 5-HT1A receptor: anxiety)
 • Chemical synthesis of new molecules that are specific for this receptor
 • In vitro screening (high throughput) to identify leads
 • Pharmacology evaluation: agonist, antagonist, potency
 • Lead selection

• Pre-Clinical Development of the Lead:
 • Animal pharmacology
 • Animal safety (rat, dog, monkey)
 • In vitro safety (screening endpoints)
 • Submit an IND (Investigational New Drug Application) to FDA

• Clinical Development:
 • Phase 1 Studies: Pharmacokinetics and initial safety
 • Phase II studies: Proof of Concept and Dose Ranging
 • Phase 3 Studies: Large efficacy/safety studies in intended population
 • File NDA and global submissions

• Phase 4: FDA commitments?

• Time: Up to 10 years. Cost: ca. $500 million (depends on drug class)
Drug Development: Focus for Today is Basic Research Principles and Terminology

• Basic Research:
 • Therapeutic target identified (e.g., 5-HT1A receptor: anxiety)
 • Chemical synthesis of new molecules that are specific for this receptor
 • In vitro screening (high throughput) to identify leads
 • Pharmacology evaluation: agonist, antagonist, potency
 • Lead selection
Terminology

• **Drug**: An exogenous substance that brings about a change in biologic function through its chemical action.

 – Phenylephrine, Dextromethorphan, Ibuprofen (OTC)
 – Bisoprolol, Risedronate, Simvastatin (Rx)

• **Pharmacology**: study of the effects of drugs on the body or system, or “what the drug does to the body”

 – Classical Pharmacology: in vitro/ in vivo testing
 – Molecular Pharmacology: cloned receptors/dna etc.
Drug Mechanisms of Action (MOA)

- Drugs produce their effects in a number of ways:
 - **Receptor-based**: stimulate or block a receptor
 - Phenylephrine activates alpha,
 adrenergic receptors
 - Ipratropium blocks the action of acetylcholine at cholinergic receptors
 - **Releasing Agents**: release neurotransmitter from nerve (cocaine)
 - **Re-uptake Blockers**: block the re-uptake of NT into nerve
 - **Enzyme-based**: activate or inhibit an enzyme
 - Monoamine oxidase inhibitors (MAO inhibitors): Iproniazid
 - ACE Inhibitors (anti-hypertensives): Captopril
 - **Activate or Inhibit Ionic channels**:
 - Calcium channel blockers for hypertension
 - Batrachotoxin: sodium channel activator
 - **Genetic Activation/Inhibition**:
 - Steroids
Drug Mechanisms of Action

- acetylcholine
- 5-HT
- noradrenaline
- histamine
- tricyclic antidepressant

5-HT re-uptake transporter
5-HT receptor
synaptic cleft

noradrenaline re-uptake transporter

histamine receptor

post-synaptic membrane
acetylcholinesterase

nerve terminal
mitochondria
MAO

acetate + choline

muscarinic acetylcholine receptor
Drug Action

• Agonists:
 – Mimic the action of an endogenous substance
 • Example: Norepinephrine
 – Activate or stimulate a receptor to produce a response
 – May be full agonists or partial agonists
 – Full agonist produces 100% of maximal response
 – Partial agonists produce < 100% of maximal response
 – EC50: dose that produces 50% of maximal response

• Antagonists:
 – Block the action of an endogenous substance
 • Example: Anti-cholinergic agents block acetylcholine
 – Competitive Antagonism: can be overcome (with more agonist)
 – Non-competitive Antagonism: cannot be overcome with more agonist
Receptor Agonists and Antagonists
Potency

- Potency: “A much misunderstood concept”
 - Potency is simply a **dose-related phenomena**
 - Potency has nothing to do with efficacy
 - Potency refers to dose: what dose do I need to get a certain response?
 - A low-potency drug can produce a full or maximal response
 - A very potent drug might only produce a partial response
 - Potency measured as EC50 (dose that produces 50% max response)
 - How can I achieve a maximal agonist response?
 - Give a small dose of a potent compound
 - Give a large dose of a less potent compound
 - Caveat: potent compounds MAY have less potential for side effects
 - Depends on pharmacology of the compound
Efficacy

• Efficacy: also a much misunderstood concept

 – Simply the level of response a drug can achieve relative to the maximal effect
 – Not related to potency
 • A full agonist may have low potency
 • A partial agonist may have high potency

 – Efficacy measured as % of full response: Emax

 – Full agonist: 100% response
 – Partial Agonist: < 100% response
Dose-Response

• Now combine potency and response:

• Dose-Response Concept:
 – Concept that increasing dose will give increasing response
 – Based on Receptor Occupancy Theory
 – A full response will be achieved when all receptors are occupied
 – (Spare Receptor Theory: alternative concept)
The Dose-Response Curve

• The concept is that as we increase dose, we increase response

• Dose is plotted on a log scale (x-axis)

• % effect is plotted on the y-axis

• The result is a sigmoidal (S-shaped) curve

• Potency and maximal effect can be determined from this plot
Potency

The potency of a series of drugs may be compared and the EC50 determined. The maximum achieved effect (Emax) can also be determined.

<table>
<thead>
<tr>
<th>Drug</th>
<th>% Drug Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>50</td>
</tr>
<tr>
<td>B</td>
<td>100</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
</tr>
</tbody>
</table>

Potency

more potent ← Potency → less potent

EC50

Log [Drug Concentration]
Partial Agonists

Partial agonists do not produce a full response, but they may have the same potency.
Antagonists

- Block the action of an endogenous substance
 - Example: Anti-cholinergic agents block acetylcholine

- Competitive Antagonism: can be overcome (with more agonist)

- Non-competitive Antagonism: cannot be overcome with more agonist
Antagonists: Block an Effect
Antagonists

Some questions for understanding:

What is the dose-response for an antagonist?

What does that dose-response look like?

What is the EC50 and Emax of an antagonist?
Competitive Antagonists

Shift the agonist dose-response curve. Emax remains the same.

Competitive Antagonism

![Graph showing competitive antagonism with dose-response curves and dosages](image-url)
Non-Competitive Antagonism

Non-competitive antagonists decrease the Emax.

Negative allosteric modulators and irreversible antagonists reduce the maximal effect of an agonist
Log-Dose Response Curve
Relating this to Receptor Occupancy
Receptor Occupancy Predicts Response

Receptor Occupancy

% Receptor Occupancy 0.1 1.0 10 100
Drug Concentration (Log Scale) 20 40 60 80 100

Nearly linear in this region

Drug Concentration (Linear Scale) 0 20 40 60 80 100

K_D

Drug Concentration (Log Scale) 0.1 1.0 10 100

K_D
Receptor Occupancy Theory

• Progressive response with progressive receptor occupancy

• 10% occupancy = 10% effect

• 50% occupancy = 50% effect

• 100% occupancy = 100% effect

• Does not explain partial agonists
 – Spare receptor theory
 – Receptor coupling
 – Agonist high and low affinity states
Therapeutic Index:
Combining a Therapeutic and a Toxic Dose Response
ED50 and LD50

Therapeutic Index = $\frac{LD_{50}}{ED_{50}}$
Radioligand Binding Methods: Studying Receptor Pharmacology

• High affinity (high potency) compound or drug
 – Selective or specific for a given receptor
 – Radio-labeled (tritium, iodine etc)

• Incubated with tissue/cells that express the given receptor
 – Radio-labeled drug binds to the receptor population

• Test drugs “compete” for this binding

• Assay the loss of radiolabelled drug
 – Calculate potency of competing drug
 – IC50 values; Ki values
Radioligand Binding Competition Study

- Yohimbine competing for 3H-U14304 at alpha2 receptors
Pharmacology Evaluations

• Radioligand Binding Studies:
 – Can determine “affinity” for receptor

• In vitro Pharmacology:
 – Can determine agonist/antagonist, potency and efficacy of a test drug

• In vivo Pharmacology:
 – Can determine full pharmacology profile of a test drug
 – Animals don’t talk: need clinical data to determine full response profile
 – Especially true for psychoactive drugs

• Clinical Studies:
 – Effects of drugs on people and populations
 – Animals do not speak; subtle effects of a drug may be missed in animal studies
 – Especially true for psychoactive drugs, which we will discuss next
Overall Drug Development Process

- Basic Research:
 - Therapeutic target identified (e.g., 5-HT1A receptor: anxiety)
 - Chemical synthesis of new molecules that are specific for this receptor
 - In vitro screening (high throughput) to identify leads
 - Pharmacology evaluation: agonist, antagonist, potency
 - Lead selection

- Pre-Clinical Development of the Lead:
 - Animal pharmacology
 - Animal safety (rat, dog, monkey)
 - In vitro safety (screening endpoints)
 - Submit an IND (Investigational New Drug Application) to FDA

- Clinical Development:
 - Phase I Studies: Pharmacokinetics and initial safety
 - Phase II studies: Proof of Concept and Dose Ranging
 - Phase 3 Studies: Large efficacy/safety studies in intended population
 - File NDA and global submissions

- Phase 4: FDA commitments?

- Time: Up to 10 years. Cost: ca. $500 million (depends on drug class)
Questions?